

Technical Information

Gamma Radiation Source FSG60,¹³⁷Cs and FSG61,⁶⁰Co

Radiometric Measurement For level, limit, density and interface measurement Conform to strict safety standards

Application

Radioactive isotopes are used as gamma radiation sources for level, density and interface measurement as well as for level limit detection.

The gamma source radiates equally in all directions. For radiometric measurements, however, only radiation passing through the tank or pipe is of interest. All other radiation is superfluous and must be shielded off.

For this reason, the radioactive source is mounted in a special source container which affords the necessary protection while providing a defined, practically unattenuated, narrow beam in one direction only.

Your benefits

- Point source in special source container ensures simple handling and easy installation
- Specially constructed source capsule conforms to strictest safety requirements: Typically class 66646 to ISO 2919
- Choice of isotope (¹³⁷Cs or ⁶⁰Co) and activity ensures optimized dosage for your application.

Table of Contents

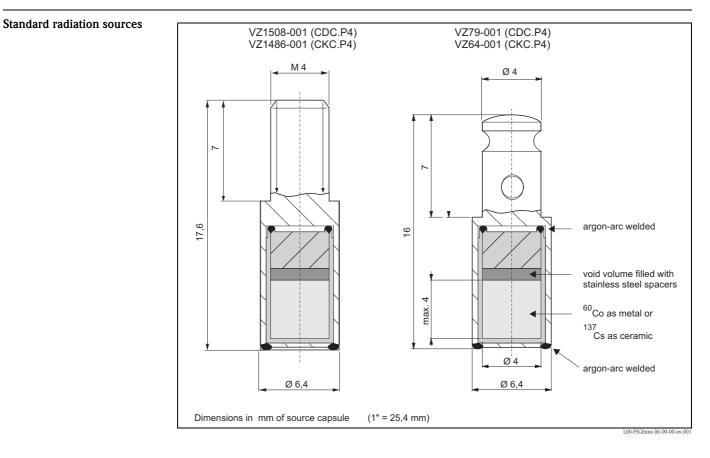
Gamma sources
Source capsule
137Cs isotopes
60Co isotopes
Technical data
Standard radiation sources
Alternative capsule types
Application
137Cs applications
60Co applications
Delivery, Transport
Germany
Other countries
Emergency procedure
Objective and overview
Emergency procedure
Notification to authority7
Procedures after termination of the application8
Internal measures
Return
Ordering information
Product structure FSG60, Cs137
Product structure FSG61, Co6010
Associated documentation11
Radiation Source Container QG20/QG100
Radiation Source Container FQG61/FQG6211
Radiation Source Container QG200011
Gammapilot M FMG6011
Gammapilot FTG470Z
Detectors DG17/DG27
Supplementary Instruction Manuals

Gamma sources

Source capsule

The radioactive sources, both ¹³⁷Cs and ⁶⁰Co, are sealed in a double-walled, welded stainless steel capsule. The encapsulation corresponds to Performance Class C 66646 as per ISO 2919, providing maximum protection against temperature, external pressure, impact, vibrations and puncture.

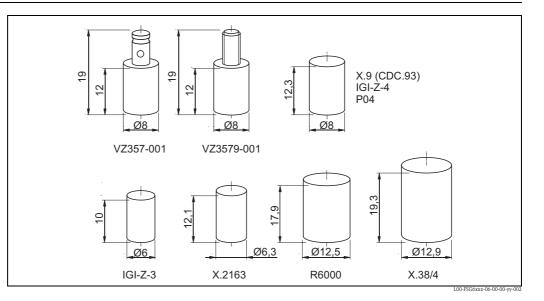
Test	Class							
1	1	2	3	4	5	6		
Temperature	No test	-40 °C (20 min) +80°C (1h)	-40 °C (20 min) +180°C (1h)	-40 °C (20 min) +400°C (1h) and thermal shock 400 °C to 20 °C	-40 °C (20 min) +600°C (1h) and thermal shock 600 °C to 20 °C	-40 °C (20 min) +800°C (1h) and thermal shock 800 °C to 20 °C		
External pressure	No test	25 kPa	25kPa _{abs} to 2 MPa _{abs}	25kP _{abs} to 7 MPa _{abs}	25kPa _{abs} to 70 MPa _{abs}	25kPa _{abs} to 170 MPa _{abs}		
Impact	No test	50 g from 1 m	200 g from 1 m	2 kg from 1 m	5 kg from 1 m	20 kg from 1 m		
Vibration	No test	3 x 10 min 25 to 500 Hz at 5 g peak amplitude	3 x 10 min 25 to 50 Hz at 5 g peak amplitude, 50 90 Hz at 0.635 mm amplitude peak to peak, 90 500 Hz at 10g peak amplitude	3 x 30 min 25 80 Hz at 1.5 mm amplitude peak to peak, 80 2000 Hz at 20 g peak amplitude				
Puncture	No test	1 g from 1 m	10 g from 1 m	50 g from 1 m	300 g from 1 m	1 kg from 1 m		

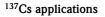

¹³⁷Cs isotopes

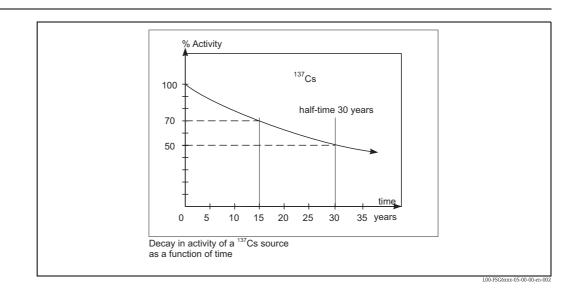
The radioactive material contained in the capsule is ¹³⁷Cs dispersed within a ceramic substrate. In view of the fact that there is no danger of leakage if the capsule is punctured, regular sealing tests are required only every five years if the capsule is permanently mounted in an Endress+Hauser source container or every three years for other installations. ¹³⁷Cs sources are not recommended for use in environments which promote corrosion or leakage of the stainless steel capsule.

⁶⁰Co isotopes

The radioactive material contained in the capsule is metallic ⁶⁰Co. Before they are delivered, the manufacturer tests the sealing and decontamination of the finished capsules. After testing, the capsule can be considered as a sealed radioactive source in accordance with ISO 2919. The source is accompanied by a sealing test certificate and PTB approval (German authorising agency).

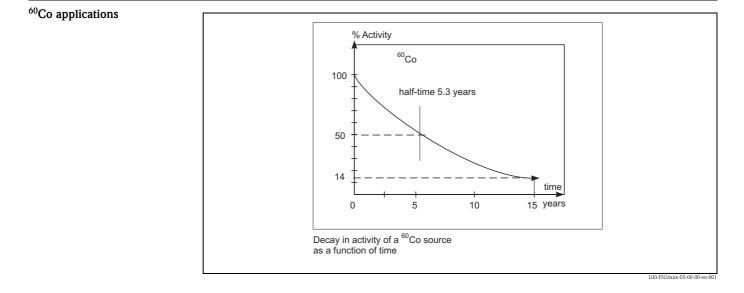

In view of the fact that the radioactive source is in solid, metallic form within in a double-walled stainless steel capsule, depending on national regulations there is normally no requirement for regular sealing tests.


Technical data


- Weight: 0.005 kg
- Encapsulation: double-walled, welded stainless steel, tye 1.4541 (321 S 18)
- Performance class typically C66646 to ISO 2919
- Protection: IP68
- Nominal operating range: -40 °C to +250 °C (-40 °F to 428 °F)
- Radioactive material:
 - ⁶⁰Co: metallic
 - ¹³⁷Cs: compound dispersed in ceramic substrate
- Energy of radiation:
 - ⁶⁰Co: 1.173 MeV and 1.333 MeV
 - ¹³⁷Cs: 0.662 MeV

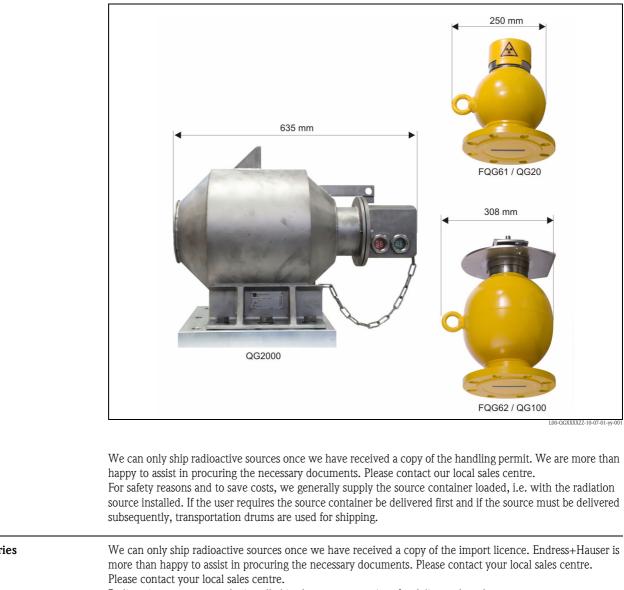
Alternative capsule types

Application



The 137 Cs source (energy 0.662 MeV) is ideal for continuous level, limit detection and density measurement. Its long half life (30 years) ensures a long operation time without the need for cost-intensive source replacement or recalibration. Thanks to the low source energy, the radiation is readily absorbed and the equipment can often be operated with no control zone.

Example:


Remaining activity after 15 years of operation: 70% -> no replacement of radiation source required.

The 60 Co source (energy 1.173 and 1.333 MeV; half life 5.3 years) is used mostly for level limit detection when the corresponding 137 Cs activity is too high. Its advantages lie in its large depth of penetration, which enables measurement over large distances or through thick tank walls. The 60 Co source can also be used for continuous level measurements when the activity of a suitable 137 Cs source is considered to be too high.

Example:

Remaining activity after 15 years of operation: 14% -> replacement of radiation source required.

Delivery, Transport

Other countries

Germany

Radioactive sources must be installed in the source container for delivery abroad.

The source container is delivered in the OFF position, secured with a lock.

The transport of loaded source containers is conducted by a company commissioned by Endress+Hauser and officially certified for executing this type of job.

Transportation shall take place in a Type "A" package which complies to the regulations of the European Agreement on the International Transportation of Hazardous Substances on Roads (ADR and DGR/IATA).

Emergency procedure

Objective and overview	This emergency procedure shall be put into effect immediately to secure an area in the interests of protecting personnel where an exposed source is known, or suspected, to exist. Such an emergency exists when a radioisotope is exposed either by it becoming separated from the source container or a source holder cannot be put into OFF position. This procedure will safeguard the personnel until the responsible radiation safety officer can attend site and advise on corrective action. The custodian of the radioactive source (the customer's designated "authorized person") is responsible for observing this procedure.					
Emergency procedure	1. Determine the unsafe area by on-site measurement.					
	2. Cordon off the concerned area by yellow tape or rope and post international radiation warning signs.					
	The radiation source container can not be switched to the "OFF" position					
	In this case the radiation source container must be unbolted from its mounting position. Point the emission channel towards a very thick wall (e.g. steel or lead) or mount a blind flange in front of the emission channel. Personnel should at all times be behind the source housing, not in front of the emission channel (flange of the FQG61/FQG62). The lifting eye on the housing should facilitate safe handling.					
	The radiation source has escaped from the source container					
	In this case, the radiation source must be placed at a safe location or additional shielding must be applied. The source should only be handled via pliers or tongs and held as far away from the body as possible. The time needed for the transport should be estimated and minimized by rehearsal without radiation source prior to execution.					
Notification to authority	1. Make necessary notifications to local authorities within 24 h.					
	2. After thorough assessment of the situation, the responsible radiation safety officer, in conjunction with local authorities, shall agree a remedy to the specific problem.					
	Note! National regulations may require other procedures and reporting obligations.					

National regulations may require other procedures and reporting obligations.

Procedures after termination of the application

Internal measures

Return

As soon as a radiometric measuring device is no longer required, the radiation source on the source container must be switched off. The source container shall be removed in accordance with all relevant regulations and saved in a lockable room having no through traffic. The responsible authorities shall be informed of these measures. The access to the storage room shall be measured out and signed. The radiation safety officer is responsible for protecting against theft. The radiation source in the source container must not be scrapped with the other parts of the plant. It should be returned as quickly as possible.

Caution!

Removal of the source container may only be carried out by supervised personnel, who have been specially trained in radiation procedures according to local regulations or handling approval. Ensure that the contents of the handling approval is valid. Local conditions are to be observed.

All work must be carried out as quickly as possible and from a distance as large as possible (shielding!). Safety procedures must also be carried out to protect personnel from all possible risks.

The disassembly of the source container can only be executed during OFF position.

Make sure, the OFF position is secured with a padlock.

Federal Republic of Germany

Contact your Endress+Hauser Sales Centre to organise the return of the radiation source for inspection with a view to reuse or recycling by Endress+Hauser.

Other countries

Contact your Endress+Hauser Sales Centre or the appropriate authority to find a way of returning the radiation source nationally. If return is not possible domestically, the further procedure must be agreed with the sales centre concerned. The destination airport for potential returns is Frankfurt, Germany.

Conditions

The following conditions must be met before returning the material:

- An inspection certificate no more than three months old confirming the leak-tightness of the radiation source must be in the possession of Endress+Hauser (wipe test certificate).
- The serial number of the source capsule, type of radiation source (⁶⁰Co or ¹³⁷Cs), activity and model of radiation source must be specified. This data may be found in the documents supplied with the radiation source.
- The material must be returned in type-tested type-A packaging (IATA rules). Order code: 52011467
 Dimensions: 400 mm x 400 mm x 650 mm (16" x 16" x 26")

🗞 Note!

The type-A-labelling at the radiation container itself is invalid for a return of the device.

Product structure FSG60,	100	Acti	vity
Cs137		AC	18,5MBq/0,5mCi
		AD	37MBq/1mCi
		AE	74MBq/2mCi
		AF	110MBq/3mCi
		AG	185MBq/5mCi
		AH	370MBq/10mCi
		AK	740MBq/20mCi
		AL	1,1GBq/30mCi
		AM	1,85GBq/50mCi
		AN	3,7GBq/100mCi
		AP	7,4GBq/200mCi
		AR	11GBq/300mCi
		AT	18,5GBq/500mCi
		AW	29,6GBq/800mCi
		BB	37GBq/1000mCi
		BC	55,5GBq/1500mCi
		BD	74GBq/2000mCi
		BF	111GBq/3000mCi
		BG	184GBq/4000mCi
		BH	185GBq/5000mCi
		BJ	222GBq/6000mCi
		BK	259GBq/7000mCi
		BL	296GBq/8000mCi
		BM	333GBq/9000mCi
		BN	370GBq/10000mCi
		BP	740GBq/20000mCi
		YY	Special version, to be specified
	200		Capsule Type
			A1 Nipple d=6,4x16mm, capsule VZ79-001; classification C66646, ISO2919
			B1 Thread M4 d=6,4x17,6mm, capsule VZ1508-001; classification C66646, ISO2919
			C1 Nipple d=8x19mm, capsule VZ357-001; classification C65545, ISO2919
			D1 Thread M4 d=8x19mm, capsule VZ3579-001; classification C65345, ISO2919
			F1 Cylinder d=8,05x12,3, capsule X.9; classification C66646, ISO2919
			G1 Cylinder d=12,9x19,3, capsule X.38/4; classification C66646, ISO2919
			H1 Cylinder d=12,5x17,9, capsule R6000; classification C63646, ISO2919
			J1 Cylinder d=6x10, capsule IGI-Z-3; classification C65546, ISO2919
			L1 Cylinder d=8x12, capsule IGI-Z-4; classification C65546, ISO2919
			Y9 Special version, to be specified
	FSG60 -		complete product designation

Ordering information

Product structure FSG61,

Co60	

100	Activity	<i>r</i> ity			
	AA 3	,7MBq/0,1mCi			
	AB 7	,4MBq/0,2mCi			
	AC 1	8,5MBq/0,5mCi			
	AD 3	7MBq/1mCi			
	AE 7-	4MBq/2mCi			
	AF 1	10MBq/3mCi			
	AG 1	85MBq/5mCi			
	AH 3	70MBq/10mCi			
	AK 7-	40MBq/20mCi			
	AL 1	,1GBq/30mCi			
	AM 1	,85GBq/50mCi			
	AN 3	,7GBq/100mCi			
	AP 7	7,4GBq/200mCi			
	AR 1	11GBq/300mCi			
	AT 1	18,5GBq/500mCi			
		29,6GBq/800mCi			
	BB 3	37GBq/1000mCi			
		4GBq/2000mCi			
	YY Sj	Special version, to be specified			
200	C	Capsule type			
	A	2 Nipple D=6,4x16mm, capsule VZ64-001; classification C66646, ISO2919			
	B	2 Thread M4 d=6,4x17mm, capsule VZ1486-001; classification C66646, ISO2919			
	C	Cylinder d=6,3x12,1, capsule X.2163; classification C63545, ISO2919			
	Y	9 Special version, to be specified			
FSG61 -		complete product designation			

Radiation Source Container TI264F QG20/QG100 Technical Information and Operating Instructions for Radiation Source Container OG20/OG100 **Radiation Source Container** TI435F FQG61/FQG62 Technical Information and Operating Instructions for Radiation Source Container FOG61/FOG62 **Radiation Source Container** TI346F QG2000 Technical Information for Radiation Source Container QG2000 BA223F Operating Instructions for Radiation Source Container QG2000 Gammapilot M FMG60 TI363F Technical Information for Gammapilot M FMG60 BA236F Operating Instructions for Gammapilot FMG60 (HART) BA329F Operating Instructions for Gammapilot FMG60 (PROFIBUS PA) BA330F Operating Instructions for Gammapilot FMG60 (FOUNDATION Fieldbus) Gammapilot FTG470Z TI218F Technical Information for Gammapilot FTG470Z Detectors DG17/DG27 TI197F Technical Information for Detectors DG17/DG27 Supplementary Instruction SD292F Manuals Supplementary Instruction Manual for Canada SD293F Supplementary Instruction Manual for the USA

Associated documentation

Instruments International

Endress+Hauser Instruments International AG Kaegenstrasse 2 4153 Reinach Switzerland

Tel. +41 61 715 81 00 Fax +41 61 715 25 00 www.endress.com info@ii.endress.com

TI439F/00/EN/09.09 71090436 FM+SGML 6.0 ProMoDo

